3 (Sem-1/CBCS) CHE HC 1

2022

CHEMISTRY

(Honours)

Paper: CHE-HC-1016

(Inorganic Chemistry-I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** questions from the following: 1×7=7
 - (a) Which series of spectral lines of hydrogen atom falls in visible range of sunlight?
 - (b) What is an eigenfunction?
 - (c) What is the value of sheilding constant for the valence electron of Li atom?

- (d) Arrange the halogens in decreasing order of their electronegativities.
- (e) Calculate the formal charge of P in PH_4^* ion.
- (f) How does bond multiplicity affect bond length?
- (g) Can the molecule Be_2 exist?
- (h) An element can show +1, +3 and +5 oxidation states. In which state does the element can act both as an oxidising agent as well as a reducing agent?
- (i) What is reduction potential?
- (j) In which group of the periodic table will the element having atomic number 119 lie?
- (k) What is an operator?
- (l) Which group of elements of the periodic table are collectively known as chalcogen?

- 2. Answer **any four** questions from the following: 2×4=8
 - (a) If the value of Rydberg constant for H atom is $1 \cdot 1 \times 10^7 m^{-1}$, what would be its value for He^+ ion?
 - (b) Define micro and macro particles in terms of 'action'.
 - (c) Show that the probability of finding the electron in a hydrogen-like atom is independent of the angle φ .
 - (d) Discuss the trend in basic strength of the hydrides of group 15 elements.
 - (e) Second electron affinity of the elements is positive. Why?
 - (f) Ionic radii of O^{2-} ion is greater than O^{-} ion. Why?
 - (g) With the help of a proper example explain that a non-polar molecule can have polar bonds.
 - (h) With the help of a proper example explain disproportionation reaction.

- 3. Answer **any three** questions from the following: $5 \times 3 = 15$
 - (a) What do you mean by orbital quantum numbers? How are their values interrelated? 3+2=5
 - (b) What are symmetric and antisymmetric wave functions? Explain Pauli's antisymmetry principle. 2+3=5
 - (c) How can the ionisation energy values of the elements be applied in determining reducing power and reactivity order of the elements.

21/2×2=5

- (d) How does electronegativity vary with bond order and hybridisation? With the help of electronegativity concept explain that $HClO_3$ is a stronger acid than HClO.
- (e) Give Kapustinskii expression for lattice energy and identify the terms involved. What are its utilities? 3+2=5
- (f) With the help of VSEPR theory explain the shapes of XeF_2 and IF_5 molecules. $2\frac{1}{2}\times2=5$

(g) Discuss electrostatic theory of H-bonding. Give reason why ice floats over water. 3+2=5

- (h) Derive Nernst equation for measuring EMF of cell.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) With the help of Bohr's theory, explain the line spectra of H-atom.
 - (ii) Explain Hund's rule of maximum multiplicity.
 - (iii) Show that an s orbital has spherical shape.
 - (b) What is effective nuclear charge? Explain the variation in effective nuclear charge of the elements along a period. Give Slater's rules for calculating screening constant. 3+2+5=10
 - (c) (i) Explain Allred and Rochow's approach of electronegativity. What are its limitations? 3+2=5

- (ii) What are radial nodes? Draw the radial probability distribution curve for 4p, 4d, 3s and 5f orbitals.
- (d) Give Hitler and London approach of bonding in H_2 molecule.
- (e) What is polarisation in ionic compounds? Give Fajan's rules on polarisation. With the help of polarisation explain the solubility of silver halide in water.

3+4+3=10

- (f) (i) Discuss electron sea model of metallic bonding and explain the metallic properties arising out of it.
 - (ii) Explain various types of hybridisation involving s and p orbitals with suitable examples.

6

(g) (i) What is ionisation energy? Explain the factors on which it depends.

1+4=5

ii) Discuss the crystal structure of zinc blende.

(h) (i) Draw the resonance structure of CO_3^{2-} and SO_4^{2-} . 2

(ii) What do you mean by wellbehaved function? 2

(iii) Identify whether the following functions are eigenfunctions of d^2/dx^2 :

- (a) coskx
- (b) e^{ikx}

Find the eigenvalue (if any).

3

(iv) Draw the shapes of the orbitals for l=2.