Total number of printed pages-7

3 (Sem-1/CBCS) MAT HC 1

oara College

2020

(Held in 2021)

MATHEMATICS

(Honours) Journal

Paper: MAT-HC-1016
(Calculus)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) Write down the value of $\frac{Lt}{t} e^{-x} \cos x$.
 - (b) When the line x = c is a vertical asymptote of the graph of a function f(x)?

- Define scalar triple product of three vectors \vec{u} , \vec{v} , \vec{w} .
- When Washer Method is used to compute a volume of revolution?
- Determine the values of t for which the function $\vec{G}(t) = t\hat{i} - \frac{1}{t}\hat{j} + \frac{1}{t-1}\hat{k}$ is continuous.
- Under what condition the graph of a vector function $\vec{F}(t)$ is smooth?
- For a production process, C(x) denotes (g)total production cost of x units and R(x) denotes total revenue derived from the sale of that x units. Under what condition profit will be maximum?
- Answer the following questions: $2 \times 4 = 8$
 - Examine if $f(x) = x^4$ has a point of inflection at x = 0.
 - Find the *n*th derivative of $y = xe^{ax}$, using Leibniz's rule.
 - Obtain the reduction formula for $\int \tan^n x \, dx.$

- (d) Evaluate $\int_{0}^{\pi} (t\hat{i} + 3\hat{j} \sin t\hat{k}) dt$.
- 3. Answer any three of the following questions:
 - (a) If $y = \sin(m \sin^{-1} x)$, show that 2+3=5
 - (i) $(1-x^2)y_2 xy_1 + m^2y = 0$
 - (ii) $(1-x^2)y_{n+2} = (2n+1)xy_{n+1} + (n^2-m^2)y_n$
 - Sketch the graph of the following (any onel equation.
 - (i) $y = 4 + \frac{2x}{x 3}$
 - (ii) $g(t) = (t^3 + t)^2$

identifying the locations of intercepts. inflection points (if any) and asymptotes. Differential and

- Obtain the reduction formula for $\int \sin^m x \cos^n x \, dx$.
- (d) Using Washer method find the volume of the solid formed by revolving the region bounded by $x = y^2$ and $y = x^2$ about (i) x-axis, (ii) y-axis.

5

(e) The position vector of a moving body is $\vec{R}(t) = 2t\,\hat{i} - t^2\,\hat{j}$ for $t \ge 0$. Express \vec{R} and velocity vector $\vec{v}(t)$ in terms \hat{u}_r and \hat{u}_θ , \hat{u}_r and \hat{u}_θ being unit vectors along and perpendicular to radial axis.

Answer any three of the following questions:

4. (a) Evaluate the following using L' Hôpital's rule

(i)
$$\lim_{x \to 0} \frac{\log x}{\csc x}$$
 2

(ii)
$$Lt_{x \to +\infty} \left(1 + \frac{1}{2x} \right)^{3x}$$
 3

(b) A liquid form of antibiotic manufactured by a pharmaceutical firm is sold in bulk at a price of Rs. 200 per unit. If the total production cost (in Rs.) for x units is $C(x) = 5,00,000 + 80x + .003x^2$ and if the production capacity of the firm is atmost 30,000 units in a specified time, how many units of antibiotic must be manufactured and sold in that time to maximize the profit?

- 5. (a) Find the length of the curve defined by $9x^2 = 4y^3$ between the points (0,0) and $(2\sqrt{3},3)$.
 - (b) Find the length of the polar curve $r = \cos \theta$.
 - (c) Using cylindrical shell method find the volume of the solid formed by revolving the region bounded by the lines y = 2x, the y-axis and y = 1 about y-axis. 4
- 6. (a) Given $\vec{F}(t) = \hat{i} + t\hat{j} + t^2\hat{k}$ and $\vec{G}(t) = t\hat{i} e^t\hat{j} + 3\hat{k}$. Find $\frac{d}{dt} \left[\vec{F}(t) \times \vec{G}(t) \right].$
 - (b) Find a vector function \vec{F} whose graph is the curve of intersection of the hemisphere $z = \sqrt{4 x^2 y^2}$ and the parabolic cylinder $y = x^2$.

(c) A projectile travels in vacuum in a coordinate plane, with x-axis along the level ground. If the projectile is fired from a height of s_0 with initial speed v_0 and angle of elevation α , then prove that at time t ($t \ge 0$) it will be at the point (x(t), y(t)) where $x(t) = v_0 \cos \alpha . t$ and

$$y(t) = v_0 \sin \alpha . t - \frac{1}{2}gt^2 + s_0$$
.

- 7. (a) Examine if $f(x) = x^{\frac{1}{3}}(x-4)$ has a vertical tangent at x = 0.
 - (b) If a non-zero vector function $\vec{F}(t)$ is differentiable and has constant length, then $\vec{F}(t)$ is orthogonal to the derivative vector $\vec{F}'(t)$ Prove it.
 - (c) An object moving along a smooth curve (with $T' \neq 0$) has velocity \vec{V} given by $\vec{V} = \frac{ds}{dt}\hat{T}$.

Deduce the expression for acceleration in the form

$$\vec{A} = \frac{d^2s}{dt^2}\hat{T} + k\left(\frac{ds}{dt}\right)^2\hat{N}$$
(Symbols having their usual meanings.)

- (a) A manufacturer estimates that when x units of a particular commodity are produced each month, the total cost (in Rs.) will be $C(x) = \frac{1}{8}x^2 + 4x + 200$ and all units can be sold at a price of p(x) = 49 x rupees per unit. Find average cost, marginal cost and marginal revenue for this production process. 2+2+2=6
 - (b) Derive the formula for surface area of a sphere of radius r. 4