Total number of printed pages-7

3 (Sem-1/CBCS) CHE HC 2

apara College Libra

2020

(Held in 2021)

CHEMISTRY

(Honours)

Paper: CHE-HC-1026

(Physical Chemistry-I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Correct representation of the kinetic gas equation is —

(i)
$$PV = \frac{1}{2}mN\overline{c^2}$$

(ii)
$$PV = \frac{1}{3}mN\overline{c^2}$$

(iii)
$$PV = \frac{1}{2}mN(\overline{c})^2$$

(iv)
$$PV = \frac{1}{3}mN(\overline{c})^2$$

- (b) Arrange the following liquids in the increasing order of their surface tensions at the same temperature: water, acetic acid, ethanol, diethyl ether.
- (c) Define fluidity of a fluid.
- (d) In a bcc lattice, the anion B occupies the corner and cation A occupies the centre. Find the formula of the compound.
- (e) In a tetrahedral void, there are _____ number of spheres around each void and _____ number of voids around each sphere. (Fill in the blanks)
- (f) In an aqueous solution of H_2S at a given temperature, $\left[H_3O^+\right] = 0.01M$, $K_{a_1} = 1.0 \times 10^{-7}$ and $K_{a_2} = 1.0 \times 10^{-14}$. Molar concentration of S^{2-} in the solution will be
 - (i) $1.0 \times 10^{-7} M$
 - (ii) $1.0 \times 10^{-9} M$
 - (iii) $1.0 \times 10^{-19} M$
 - (iv) $1.0 \times 10^{-23} M$ (Choose the correct option)

- (g) Define common ion effect.
- 2. Answer the following questions: 2×4=8
 - (a) Define the following:Collision frequency, Collision diameter.
 - (b) Both NaCl and KCl have fcc structures. But KCl behaves towards X-rays like a simple cubic array. Explain.
 - (c) Define vapour pressure of a liquid. How vapour pressure of a liquid is related to its boiling point?
 - (d) What is meant by ionic product of water? How does it vary with temperature?
- 3. Answer **any three** of the following questions: $5\times3=15$
 - (a) On the basis of Maxwell distribution of molecular speeds, derive an expression for most probable speed of gas molecules. At a given temperature, compare average speed, most probable speed and root mean square speed of a gas.

- (b) Define surface tension of a liquid. Give its SI unit. Describe drop number method to measure surface tension of a liquid.
- (c) State the law of constancy of interfacial angles and law of rational indices.

Draw the (100), (110) and (111) planes in a simple cubic crystal system.

- (d) Derive the Ostwald's dilution law for a weak acid. Give the limitation of the Ostwald's dilution law.
- (e) Derive the Henderson-Hasselbalch equation for a buffer solution of a weak acid and its salt.

 How the dissociation constant of a weak acid can be determined by measuring the pH of a buffer solution containing equimolar amounts of the acid and its salt?

The business of the second serious

- 4. (a) Answer **either** [(i), (ii) and (iii)] **or** [(iv), (v) and (vi)]:
 - (i) Obtain a relation between mean free path and co-efficient of viscosity of a gas.

- (ii) How does co-efficient of viscosity of a gas vary with temperature and pressure?
- (iii) The mean free path of N_2 gas at 273K and $1 \, bar$ pressure is $1.0 \times 10^{-7} \, m$. Calculate the mean free path of the gas at 273K and $0.01 \, bar$ pressure.
 - (iv) From kinetic gas equation, show that average translational kinetic energy of an ideal gas is proportional to its absolute temperature.
 - (v) Calculate the average translational kinetic energy of one molecule and one mole of oxygen gas at 27°C.
 - (vi) Give the causes of deviation from ideal behaviour by a real gas. 3
 - (b) Answer **either** [(i) and (ii)] **or** [(iii), (iv) and (v)]:
- (i) Explain a method of determination of vapour pressure of a liquid. 4

- (ii) What is radial distribution function? Explain how the radial distribution function is used for elucidation of structure of liquid.

 2+4=6
- (iii) Explain the cleansing action of detergents.
- (iv) Explain how surface tension of water is influenced by the addition of sugar and common salt separately.
- (v) Compare the viscosity of liquid with gas in terms of change of temperature and pressure.
- (c) Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) Explain how temperature and concentration affects the degree of ionisation of weak electrolyte.
 - (ii) What is buffer action? With the help of a suitable example, explain the mechanism of buffer action. Define buffer capacity. 1+3+1=5

- (iii) The pH intercellular fluid and blood of human body is naturally maintained. Name the buffers that helps to maintain the pH of human blood 7.4.
- (iv) Obtain an expression for hydrolysis constant of CH₃COONa.
- (v) The degree of hydrolysis of sodium acetate in its 0.01M solution is 0.023%. Calculate the hydrolysis constant, K_h and concentration of OH^- ions in the solution. 3+1=4
- (vi) Give the different equilibria stages of H_3PO_4 and compare pKa values in these stages.

3