Total number of printed pages-7

3 (Sem-1/CBCS) PHY HC 1

College

2020

(Held in 2021)

PHYSICS

(Honours)

Paper: PHY-HC-1016

(Mathematical Physics-I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
- (a) What is the geometrical interpretation of the scalar triple product of three vectors?

(b) If
$$\vec{R}(u) = \frac{d}{du}\vec{S}(u)$$
, find $\int_a^b \vec{R}(u) du$.

- (c) Find the Laplacian of the scaler field $\phi = xy^2z^3.$
- (d) Determine the order and degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right) + x^2 \left(\frac{dy}{dx}\right)^2 = 0$$

- (e) What are the coordinate surfaces in orthogonal curvilinear coordinates?
- (f) Define Dirac delta function.
- (g) Write the difference between Systematic error and Random error.

- 2. Answer **any four** of the following questions: $2 \times 4 = 8$
 - (a) If $\vec{A}(t)$ has a constant magnitude, then show that $\frac{d\vec{A}}{dt}$ is perpendicular to \vec{A} .
 - (b) Prove that, the vector $\vec{A} = 3y^4z^2\hat{i} + 4x^3z^2\hat{j} 3x^2y^2\hat{k} \text{ is solenoidal.}$
 - (c) Show that $\iint_S \vec{A} \cdot \hat{n} \, dS$, over any closed surface S is equal to $\iint_R \vec{A} \cdot \hat{n} \, \frac{dx \, dy}{\left|\hat{n} \cdot \hat{k}\right|}$, where R is the projection of S on xy-plane.
 - (d) Solve the differential equation

$$xy(y+1)dy = (x^2+1)dx.$$

- State the transformation relation between the spherical polar coordinates (r, θ, ϕ) and Cartesian coordinates (x, y, z). Obtain the volume elements in spherical polar co-ordinate.
- Answer any three of the following questions: 5×3=15
 - How will you define divergence and curl of a vector \vec{V} . Evaluate $\vec{\nabla} \cdot \vec{r}$ and $\vec{\nabla} \times \vec{r}$.
 - (b) If \vec{A} is a vector, prove that $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}.$
 - Test the Exactness of the differential equation
- $(5x^4 + 3x^2y^2 2xy^3)dx + (2x^3y 3x^2y^2 5y^4)dy = 0$ and then solve it.
 - Express $\nabla^2 \psi$ in orthogonal curvilinear coordinates. 1-115 ((+ 1) 1/X

- 4. Answer any three of the following questions: 10×3=30
 - Show that the surface integral of a vector \vec{F} and the volume integral of the divergence of the same vector obey the relation:

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{V} (\vec{\nabla} \cdot \vec{F}) dV$$
 6

(ii) Evaluate $\iint \vec{r} \cdot \hat{n} dS$, where S is a closed surface.

OR

(b) Prove that $\oint_{S} \vec{A} \cdot d\vec{\lambda} = \int_{S} (\vec{\nabla} \times \vec{A}) \cdot d\vec{S}$, where C is the curve bounding the surface S. Hence find $\oint \vec{r} \cdot d\vec{r}$.

8+2=10

(c) Solve the following differential equations: 5+5=10

(i)
$$(1+x^2)\frac{dy}{dx} + 2xy = \cos x$$

- (ii) $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$, subject to the condition y(0) = 0 and y'(0) = 1.
- Prove that spherical polar coordinate system is orthogonal. 6
 - The probability density function of a variable X is

<i>X</i> :	0	1	2	3	4	5	6
P(X):	k	3k	5 <i>k</i>	7k	9k	11k	13k

Find P(X < 4), $P(X \ge 5)$, $P(3 < X \le 6)$. Here P(X) is a probability density function.

- Prove the expression (e) $\int_{-\infty}^{+\infty} \delta(x) dx = 1 \text{ where } \delta(x) = 0 \text{ if}$ $x \neq 0$ and $\delta(x) = \infty$ if x = 0.
 - Given the three vectors

$$\vec{A} = \hat{i} + 2\hat{j} - \hat{k}$$

$$\vec{B} = \hat{j} + \hat{k}$$

$$\vec{C} = \hat{i} - \hat{j}$$

Evaluate $\vec{A} \times (\vec{B} \times \vec{C})$ and show that $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B})$

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(A \cdot B)$$
2+3=5